skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Janoski, Tyler P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Arctic amplification (AA), defined as the enhanced warming of the Arctic compared to the global average, is a robust feature of historical observations and simulations of future climate. Despite many studies investigating AA mechanisms, their relative importance remains contested. In this study, we examine the different timescales of these mechanisms to improve our understanding of AA’s fundamental causes. We use the Community Earth System Model v1, Large Ensemble configuration (CESM-LE), to generate large ensembles of 2 years simulations subjected to an instantaneous quadrupling of CO2. We show that AA emerges almost immediately (within days) following CO2increase and before any significant loss of Arctic sea ice has occurred. Through a detailed energy budget analysis of the atmospheric column, we determine the time-varying contributions of AA mechanisms over the simulation period. Additionally, we examine the dependence of these mechanisms on the season of CO2quadrupling. We find that the surface heat uptake resulting from the different latent heat flux anomalies between the Arctic and global average, driven by the CO2forcing, is the most important AA contributor on short (<1 month) timescales when CO2is increased in January, followed by the lapse rate feedback. The latent heat flux anomaly remains the dominant AA mechanism when CO2is increased in July and is joined by the surface albedo feedback, although AA takes longer to develop. Other feedbacks and energy transports become relevant on longer (>1 month) timescales. Our results confirm that AA is an inherently fast atmospheric response to radiative forcing and reveal a new AA mechanism. 
    more » « less